Challenges and opportunities for innovation in bioinformed sustainable materials
Zhao, N. et al. Bioinspired Materials: from Low to High Dimensional Structure. Adv. Mater. 26, 6994–7017 (2014).
Google Scholar
Zhang, C., McAdams Ii, D. A. & Grunlan, J. C. Nano/Micro-Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures. Adv. Mater. 28, 6292–6321 (2016).
Google Scholar
Ding, Z., Zreiqat, H. & Mirkhalaf, M. Rationally-designed self-shaped ceramics through heterogeneous green body compositions. Mater. Horiz. 9, 2762–2772 (2022).
Google Scholar
Greanya, V. Bioinspired Photonics: Optical Structures and Systems Inspired by Nature. 1–416 (CRC Press, 2015).
Jung, Y. H., Park, B., Kim, J. U. & Kim, T. I. Bioinspired Electronics for Artificial Sensory Systems. Adv. Mater. 31, e1803637 (2019).
Google Scholar
Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).
Google Scholar
Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).
Google Scholar
Bhattacharya, P., Du, D. & Lin, Y. Bioinspired nanoscale materials for biomedical and energy applications. J. R. Soc. Interface 11, 20131067 (2014).
Google Scholar
Proppe, A. H. et al. Bioinspiration in light harvesting and catalysis. Nat. Rev. Mater. 5, 828–846 (2020).
Google Scholar
Ortiz, C. & Boyce, M. C. Bioinspired structural materials. Science 319, 1053–1054 (2008).
Google Scholar
Losic, D., Mitchell, J. G. & Voelcker, N. H. Diatomaceous Lessons in Nanotechnology and Advanced Materials. Adv. Mater. 21, 2947–2958 (2009).
Google Scholar
Nguyen, P. Q., Courchesne, N. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Adv. Mater. 30, e1704847 (2018).
Google Scholar
Cohen, Y. H. & Reich, Y. The biomimicry discipline: Boundaries, definitions, drivers, promises and limits. In Biomimetic Design Method for Innovation and Sustainability (eds Cohen Y. H. & Reich Y.). Ch. 1, 3–17 (Springer Cham, 2016).
Whitesides, G. M. Bioinspiration: something for everyone. Interf. Focus 5, 20150031 (2015).
Google Scholar
Ng, L., Elgar, M. A. & Stuart-Fox, D. From Bioinspired to Bioinformed: Benefits of Greater Engagement From Biologists. Front. Ecol. Environ. 9, 1–9 (2021).
Cutkosky, M. R. Climbing with adhesion: from bioinspiration to biounderstanding. Interface Focus 5, 20150015 (2015).
Google Scholar
Adriaens, D., Lakhtakia, A., Martín-Palma, R. J. & Knez, M. Evomimetics: The biomimetic design thinking 2.0. In Proceedings of SPIE 10965: SPIE Smart Structures + Nondestructive Evaluation. (eds R. K. Martín-Palma, M. Knez, & A. Lakhtakia). 41–53 (CO: SPIE, 2019).
Ilieva, L., Ursano, I., Traista, L., Hoffmann, B. & Dahy, H. Biomimicry as a Sustainable Design Methodology – Introducing the ‘Biomimicry for Sustainability’ Framework. Biomimetics 7, 37 (2022).
Google Scholar
Dou, S. et al. Bioinspired Microstructured Materials for Optical and Thermal Regulation. Adv. Mater. 33, e2000697 (2021).
Google Scholar
Wang, Y., Naleway, S. E. & Wang, B. Biological and bioinspired materials: Structure leading to functional and mechanical performance. Bioact. Mater. 5, 745–757 (2020).
Ghazlan, A. et al. Inspiration from Nature’s body armours – A review of biological and bioinspired composites. Compos. B. Eng. 205, 108513 (2021).
Google Scholar
Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).
Google Scholar
Pena-Francesch, A., Jung, H. H., Demirel, M. C. & Sitti, M. Biosynthetic self-healing materials for soft machines. Nat. Mater. 19, 1230–1235 (2020).
Google Scholar
Eder, M., Amini, S. & Fratzl, P. Biological composites-complex structures for functional diversity. Science 362, 543–547 (2018).
Google Scholar
Naik, R. R. & Singamaneni, S. Introduction: Bioinspired and Biomimetic Materials. Chem. Rev. 117, 12581–12583 (2017).
Google Scholar
Yu, Z.-L. et al. Bioinspired polymeric woods. Sci. Adv. 4, eaat7223 (2018).
Google Scholar
Nepal, D. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023).
Google Scholar
Barthelat, F., Yin, Z. & Buehler, M. J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 1, 16007 (2016).
Google Scholar
Fu, K., Moreno, D., Yang, M. & Wood, K. L. Bio-Inspired Design: An Overview Investigating Open Questions From the Broader Field of Design-by-Analogy. J. Mech. Des. 136, 111102 (2014).
Google Scholar
ISO/TC 266. Biomimetics — Terminology, concepts and methodology. 25 (International Organization for Standardization, Beuth Verlag, Berlin, Germany, 2015).
Chen, P.-Y., McKittrick, J. & Meyers, M. A. Biological materials: Functional adaptations and bioinspired designs. Prog. Mater. Sci. 57, 1492–1704 (2012).
Google Scholar
Vijayan, P. P. & Puglia, D. Biomimetic multifunctional materials: a review. Emerg. Mater. 2, 391–415 (2019).
Google Scholar
Shu, L. H., Ueda, K., Chiu, I. & Cheong, H. Biologically inspired design. CIRP Ann. 60, 673–693 (2011).
Google Scholar
Goel, A. K., McAdams, D. A. & Stone, R. B. Biologically inspired design. 1 edn, 1–333 (Springer-Verlag, 2014).
UN. Report of the World Commission on Environment and Development: Our common future. (United Nations, 1987).
UN. Transforming our world: the 2030 Agenda for Sustainable Development. (United Nations, 2015).
Perricone, V., Langella, C. & Santulli, C. Sustainable Biomimetics: A Discussion on Differences in Scale, Complexity, and Organization Between the Natural and Artificial World. In Bionics and Sustainable Design (eds Palombini F. L. & Muthu S. S.). Ch. 7, 171–193 (Springer Singapore, 2022).
MacArthur, E. Towards the circular economy. J. Ind. Ecol. 2, 23–44 (2013).
Rahman, M. Z. et al. Advanced biopolymers for automobile and aviation engineering applications. J. Polym. Res. 30, 106 (2023).
Google Scholar
Sohn, Y. J. et al. Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnology Journal 15, 1900489 (2020).
Google Scholar
Nagel, J. K. S. A Thesaurus for Bioinspired Engineering Design. In Biologically Inspired Design (eds Goel A. K., McAdams D. A., & Stone R. B.). Ch. 4, 63–94 (Springer, 2014).
Nagel, J. K. S., Nagel, R. L. & Eggermont, M. Teaching Biomimicry With an Engineering-to-Biology Thesaurus. In International design engineering technical conferences and computers and information in engineering conference. 1–10 (IDETC/CIE, 2013).
Deldin, J.-M. & Schuknecht, M. The AskNature Database: Enabling Solutions in Biomimetic Design. In Biologically Inspired Design: Computational Methods and Tools (eds Goel A. K., McAdams D. A., & Stone R. B.). Ch. 2, 17–27 (Springer London, 2014).
Küntzer, J. et al. BN++ – A Biological Information System. J. Integr. Bioinform. 3, 148–161 (2006).
Google Scholar
Wolff, J. O., Wells, D., Reid, C. R. & Blamires, S. J. Clarity of objectives and working principles enhances the success of biomimetic programs. Bioinspir. Biomim. 12, 051001 (2017).
Google Scholar
Niewiarowski, P. H., Stark, A. Y. & Dhinojwala, A. Sticking to the story: outstanding challenges in gecko-inspired adhesives. J. Exp. Biol. 219, 912–919 (2016).
Google Scholar
Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Nat. Commun. 11, 2519 (2020).
Google Scholar
Arakawa, K. et al. 1000 spider silkomes: Linking sequences to silk physical properties. Sci. Adv. 8, eabo6043 (2022).
Google Scholar
DigiMorph. A voxel-based digital library of morphology, (2022).
Boyer, D. M., Gunnell, G. F., Kaufman, S. & McGeary, T. M. Morphosource: Archiving and sharing 3-D digital specimen data. Pap. Palaeontol. 22, 157–181 (2016).
Google Scholar
Chan, W.-P. et al. A high-throughput multispectral imaging system for museum specimens. Communications Biology 5, 1318 (2022).
Google Scholar
Shirey, V. et al. LepTraits 1.0 A globally comprehensive dataset of butterfly traits. Sci. Data 9, 382 (2022).
Google Scholar
Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philos. Trans. Royal Soc. B 374, 20170391 (2019).
Google Scholar
Broeckhoven, C. & du Plessis, A. Escaping the Labyrinth of Bioinspiration: Biodiversity as Key to Successful Product Innovation. Adv. Funct. Mater. 32, 2110235 (2022).
Google Scholar
Mitchell, J. G. et al. The Role of Diatom Nanostructures in Biasing Diffusion to Improve Uptake in a Patchy Nutrient Environment. PLoS One 8, e59548 (2013).
Google Scholar
Blamires, S. J., Wu, C.-L., Blackledge, T. A. & Tso, I.-M. Environmentally induced post-spin property changes in spider silks: influences of web type, spidroin composition and ecology. Biol. J. Linn. 106, 580–588 (2012).
Google Scholar
Büscher, T. H., Bank, S., Cumming, R. T., Gorb, S. N. & Bradler, S. Leaves that walk and eggs that stick: comparative functional morphology and evolution of the adhesive system of leaf insect eggs (Phasmatodea: Phylliidae). BMC Ecol. Evol. 23, 17 (2023).
Google Scholar
Büscher, T. H. & Gorb, S. N. Convergent Evolution of Adhesive Properties in Leaf Insect Eggs and Plant Seeds: Cross-Kingdom Bioinspiration. Biomimetics 7, 173 (2022).
Google Scholar
De Tommasi, E., Gielis, J. & Rogato, A. Diatom Frustule Morphogenesis and Function: a Multidisciplinary Survey. Mar. Genom. 35, 1–18 (2017).
Google Scholar
Hamm, C. E. The evolution of advanced mechanical defenses and potential technological applications of diatom shells. J. Nanosci. Nanotechnol. 5, 108–119 (2005).
Google Scholar
Ng, C. S. & Li, W.-H. Genetic and Molecular Basis of Feather Diversity in Birds. Genome Biol. Evol. 10, 2572–2586 (2018).
Google Scholar
Craig, H. C. et al. Nanovoid formation induces property variation within and across individual silkworm silk threads. J. Mater. Chem. B. 10, 5561–5570 (2022).
Google Scholar
Patek, S. N. Biomimetics and evolution. Science 345, 1448–1449 (2014).
Google Scholar
Pro, J. W. & Barthelat, F. Is the Bouligand architecture tougher than regular cross-ply laminates? A discrete element method study. Extreme Mech. Lett. 41, 101042 (2020).
Google Scholar
Tan, E. J., Elgar, M. A., Bian, X. & Peters, R. A. Interpreting animal behaviors – A cautionary note about swaying in phasmids. Front. Ecol. Environ. 11, 1065789 (2023).
Mirkhalaf, M. & Zreiqat, H. Fabrication and Mechanics of Bioinspired Materials with Dense Architectures: Current Status and Future Perspectives. JOM 72, 1458–1476 (2020).
Google Scholar
Jackson, A. P., Vincent, J. F. V., Turner, R. M. & Alexander, R. M. The mechanical design of nacre. Proc. Royal Soc. B 234, 415–440 (1988).
Hashemi Farzaneh, H. Bio-inspired design: the impact of collaboration between engineers and biologists on analogical transfer and ideation. Res. Eng. Des. 31, 299–322 (2020).
Google Scholar
Barley, W. C., Ruge-Jones, L., Wissa, A., Suarez, A. V. & Alleyne, M. Addressing Diverse Motivations to Enable Bioinspired Design. Integrat. Comparat. Biol. 5, 1–10 (2022).
Blamires, S. J., Spicer, P. T. & Flanagan, P. J. Spider Silk Biomimetics Programs to Inform the Development of New Wearable Technologies. Front. Mater. Sci. 7, 29 (2020).
Google Scholar
Speck, O., Speck, D., Horn, R., Gantner, J. & Sedlbauer, K. P. Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspir. Biomim. 12, 011004 (2017).
Google Scholar
Lin, R.-J., Tan, K.-H. & Geng, Y. Market demand, green product innovation, and firm performance: evidence from Vietnam motorcycle industry. J. Clean. Prod. 40, 101–107 (2013).
Google Scholar
McGaw, J., Andrianopoulos, A. & Liuti, A. Tangled Tales of Mycelium and Architecture: Learning From Failure. Front. Built Environ. 8, 1–8 (2022).
Google Scholar
Hölttä-Otto, K. & de Weck, O. Degree of modularity in engineering systems and products with technical and business constraints. Concurr. Eng. 15, 113–126 (2007).
Google Scholar
Hölttä, K., Suh, E. S. & de Weck, O. Tradeoff between modularity and performance for engineered systems and products. In DS 35: Proceedings ICED 05, the 15th international conference on engineering design. 449–450 (ICED, 2005).
Yang, Y. et al. Recycling of composite materials. Chem. Eng. Process. 51, 53–68 (2012).
Google Scholar
Miller, B. D. & Clark, J. E. Dynamic similarity and scaling for the design of dynamical legged robots. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 5719–5726 (IEEE, 2015).
Labonte, D. et al. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. PNAS 113, 1297–1302 (2016).
Google Scholar
Perricone, V., Grun, T. B., Marmo, F., Langella, C. & Candia Carnevali, M. D. Constructional design of echinoid endoskeleton: main structural components and their potential for biomimetic applications. Bioinspir. Biomim. 16, 011001 (2020).
Google Scholar
Kalirajan, C., Dukle, A., Nathanael, A. J., Oh, T. H. & Manivasagam, G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers (Basel) 13, 3015 (2021).
Google Scholar
Gumrah Dumanli, A. Nanocellulose and its composites for biomedical applications. Curr. Med. Chem. 24, 512–528 (2017).
Google Scholar
Hou, J., Aydemir, B. E. & Dumanli, A. G. Understanding the structural diversity of chitins as a versatile biomaterial. Philos. Trans. Royal Soc. A 379, 20200331 (2021).
Google Scholar
Ramamoorthy, S. K., Skrifvars, M. & Persson, A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 55, 107–162 (2015).
Google Scholar
Rodrigo-Navarro, A., Sankaran, S., Dalby, M. J., del Campo, A. & Salmeron-Sanchez, M. Engineered living biomaterials. Nat. Rev. Mater. 6, 1175–1190 (2021).
Google Scholar
Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustainab. 5, 157–166 (2022).
Google Scholar
Ashby, M. F. Materials and sustainable development (Butterworth-Heinemann, 2022).
Ashby, M. F. Materials and the environment: eco-informed material choice (Elsevier, 2012).
Ansys GRANTA selector software (Cambridge, UK, 2023).
Scarratt, L. R. J., Steiner, U. & Neto, C. A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces. Adv. Colloid Interface Sci. 246, 133–152 (2017).
Google Scholar
Losic, D., Pillar, R. J., Dilger, T., Mitchell, J. G. & Voelcker, N. H. Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. J. Porous Mater. 14, 61–69 (2007).
Google Scholar
Studart, A. R. Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45, 359–376 (2016).
Google Scholar
Hasanov, S. et al. Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges. J. Manuf. Mater. Process. 6, 1–32 (2021).
Wilts, B. D. et al. Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. Sci. Adv. 3, e1603119 (2017).
Google Scholar
Bradbury, J. Nature’s Nanotechnologists: Unveiling the Secrets of Diatoms. PLOS Biol. 2, e306 (2004).
Google Scholar
Viana, S. T. F. L. & de Carvalho, M. R. Squalus shiraii sp. nov. (Squaliformes, Squalidae), a new species of dogfish shark from Japan with regional nominal species revisited. Zoosyst. Evol. 96, 275–311 (2020).
Google Scholar
King, D. R., Bartlett, M. D., Gilman, C. A., Irschick, D. J. & Crosby, A. J. Creating gecko-like adhesives for “real world” surfaces. Adv. Mater. 26, 4345–4351 (2014).
Google Scholar
Imburgia, M. J., Kuo, C.-Y., Briggs, D. R., Irschick, D. J. & Crosby, A. J. Effects of Digit Orientation on Gecko Adhesive Force Capacity: Synthetic and Behavioral Studies. Integr. Comp. Biol. 59, 182–192 (2019).
Google Scholar
Nwuzor, I. C., Idumah, C. I., Nwanonenyi, S. C. & Ezeani, O. E. Emerging trends in self-polishing anti-fouling coatings for marine environment. Saf. Extreme. Environ. 3, 9–25 (2021).
Google Scholar
Maan, A. M. C., Hofman, A. H., Vos, W. M. & Kamperman, M. Recent Developments and Practical Feasibility of Polymer‐Based Antifouling Coatings. Adv. Funct. Mater. 30, 2000936 (2020).
Google Scholar
Jin, H., Tian, L., Bing, W., Zhao, J. & Ren, L. Bioinspired marine antifouling coatings: Status, prospects, and future. Prog. Mater. Sci. 124, 100889 (2022).
Google Scholar
Almeida, J. R. & Vasconcelos, V. Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol. Adv. 33, 343–357 (2015).
Google Scholar
Tsoukatou, M., Hellio, C., Vagias, C., Harvala, C. & Roussis, V. Chemical Defense and Antifouling Activity of Three Mediterranean Sponges of the Genus Ircinia. Z. Naturforsch C. J. Biosci. 57, 161–171 (2002).
Google Scholar
Bhoj, Y., Tharmavaram, M. & Rawtani, D. A comprehensive approach to antifouling strategies in desalination, marine environment, and wastewater treatment. Chem. Phys. 2, 100008 (2021).
Sousa-Cardoso, F., Teixeira-Santos, R. & Mergulhão, F. J. M. Antifouling Performance of Carbon-Based Coatings for Marine Applications: A Systematic Review. Antibiotics 11, 1102 (2022).
Google Scholar
Kumar, S., Ye, F., Dobretsov, S. & Dutta, J. Nanocoating Is a New Way for Biofouling Prevention. Front. Nanosci. 3, 771098 (2021).
Tian, L. et al. Novel Anti-fouling Strategies of Live and Dead Soft Corals (Sarcophyton trocheliophorum): Combined Physical and Chemical Mechanisms. J. Bionic. Eng. 17, 677–685 (2020).
Google Scholar
Vega-Sánchez, C., Peppou-Chapman, S., Zhu, L. & Neto, C. Nanobubbles explain the large slip observed on lubricant-infused surfaces. Nature Comm. 13, 351 (2022).
Google Scholar
Ware, C. S. et al. Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces. ACS Appl. Mater. Interfaces 10, 4173–4182 (2018).
Google Scholar
Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L. & Picu, R. C. Morphology and mechanics of fungal mycelium. Sci. Rep. 7, 13070 (2017).
Google Scholar
Dias, P. P., Jayasinghe, L. B. & Waldmann, D. Investigation of Mycelium-Miscanthus composites as building insulation material. Res. Mat. 10, 100189 (2021).
Javadian, A., Le Ferrand, H., Hebel, D. E. & Saeidi, N. Application of Mycelium-Bound Composite Materials in Construction Industry: A Short Review. Mater. Sci. Eng. 7, 1–9 (2020).
Abhijith, R., Ashok, A. & Rejeesh, C. R. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater. Today 5, 2139–2145 (2018).
Google Scholar
Silverman, J., Cao, H. & Cobb, K. Development of Mushroom Mycelium Composites for Footwear Products. Cloth. Text. Res. J. 38, 119–133 (2020).
Google Scholar
Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 187, 108397 (2020).
Google Scholar
Tacer-Caba, Z., Varis, J. J., Lankinen, P. & Mikkonen, K. S. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Mater. Des. 192, 108728 (2020).
Google Scholar
link