Challenges and opportunities for innovation in bioinformed sustainable materials

0
Challenges and opportunities for innovation in bioinformed sustainable materials
  • Zhao, N. et al. Bioinspired Materials: from Low to High Dimensional Structure. Adv. Mater. 26, 6994–7017 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zhang, C., McAdams Ii, D. A. & Grunlan, J. C. Nano/Micro-Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures. Adv. Mater. 28, 6292–6321 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ding, Z., Zreiqat, H. & Mirkhalaf, M. Rationally-designed self-shaped ceramics through heterogeneous green body compositions. Mater. Horiz. 9, 2762–2772 (2022).

    Article 
    CAS 

    Google Scholar 

  • Greanya, V. Bioinspired Photonics: Optical Structures and Systems Inspired by Nature. 1–416 (CRC Press, 2015).

  • Jung, Y. H., Park, B., Kim, J. U. & Kim, T. I. Bioinspired Electronics for Artificial Sensory Systems. Adv. Mater. 31, e1803637 (2019).

    Article 

    Google Scholar 

  • Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    Article 
    CAS 

    Google Scholar 

  • Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).

    Article 
    CAS 

    Google Scholar 

  • Bhattacharya, P., Du, D. & Lin, Y. Bioinspired nanoscale materials for biomedical and energy applications. J. R. Soc. Interface 11, 20131067 (2014).

    Article 

    Google Scholar 

  • Proppe, A. H. et al. Bioinspiration in light harvesting and catalysis. Nat. Rev. Mater. 5, 828–846 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ortiz, C. & Boyce, M. C. Bioinspired structural materials. Science 319, 1053–1054 (2008).

    Article 
    CAS 

    Google Scholar 

  • Losic, D., Mitchell, J. G. & Voelcker, N. H. Diatomaceous Lessons in Nanotechnology and Advanced Materials. Adv. Mater. 21, 2947–2958 (2009).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, P. Q., Courchesne, N. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Adv. Mater. 30, e1704847 (2018).

    Article 

    Google Scholar 

  • Cohen, Y. H. & Reich, Y. The biomimicry discipline: Boundaries, definitions, drivers, promises and limits. In Biomimetic Design Method for Innovation and Sustainability (eds Cohen Y. H. & Reich Y.). Ch. 1, 3–17 (Springer Cham, 2016).

  • Whitesides, G. M. Bioinspiration: something for everyone. Interf. Focus 5, 20150031 (2015).

    Article 

    Google Scholar 

  • Ng, L., Elgar, M. A. & Stuart-Fox, D. From Bioinspired to Bioinformed: Benefits of Greater Engagement From Biologists. Front. Ecol. Environ. 9, 1–9 (2021).

    Google Scholar 

  • Cutkosky, M. R. Climbing with adhesion: from bioinspiration to biounderstanding. Interface Focus 5, 20150015 (2015).

    Article 

    Google Scholar 

  • Adriaens, D., Lakhtakia, A., Martín-Palma, R. J. & Knez, M. Evomimetics: The biomimetic design thinking 2.0. In Proceedings of SPIE 10965: SPIE Smart Structures + Nondestructive Evaluation. (eds R. K. Martín-Palma, M. Knez, & A. Lakhtakia). 41–53 (CO: SPIE, 2019).

  • Ilieva, L., Ursano, I., Traista, L., Hoffmann, B. & Dahy, H. Biomimicry as a Sustainable Design Methodology – Introducing the ‘Biomimicry for Sustainability’ Framework. Biomimetics 7, 37 (2022).

    Article 

    Google Scholar 

  • Dou, S. et al. Bioinspired Microstructured Materials for Optical and Thermal Regulation. Adv. Mater. 33, e2000697 (2021).

    Article 

    Google Scholar 

  • Wang, Y., Naleway, S. E. & Wang, B. Biological and bioinspired materials: Structure leading to functional and mechanical performance. Bioact. Mater. 5, 745–757 (2020).

    Google Scholar 

  • Ghazlan, A. et al. Inspiration from Nature’s body armours – A review of biological and bioinspired composites. Compos. B. Eng. 205, 108513 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article 
    CAS 

    Google Scholar 

  • Pena-Francesch, A., Jung, H. H., Demirel, M. C. & Sitti, M. Biosynthetic self-healing materials for soft machines. Nat. Mater. 19, 1230–1235 (2020).

    Article 
    CAS 

    Google Scholar 

  • Eder, M., Amini, S. & Fratzl, P. Biological composites-complex structures for functional diversity. Science 362, 543–547 (2018).

    Article 
    CAS 

    Google Scholar 

  • Naik, R. R. & Singamaneni, S. Introduction: Bioinspired and Biomimetic Materials. Chem. Rev. 117, 12581–12583 (2017).

    Article 
    CAS 

    Google Scholar 

  • Yu, Z.-L. et al. Bioinspired polymeric woods. Sci. Adv. 4, eaat7223 (2018).

    Article 
    CAS 

    Google Scholar 

  • Nepal, D. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023).

    Article 
    CAS 

    Google Scholar 

  • Barthelat, F., Yin, Z. & Buehler, M. J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 1, 16007 (2016).

    Article 
    CAS 

    Google Scholar 

  • Fu, K., Moreno, D., Yang, M. & Wood, K. L. Bio-Inspired Design: An Overview Investigating Open Questions From the Broader Field of Design-by-Analogy. J. Mech. Des. 136, 111102 (2014).

    Article 

    Google Scholar 

  • ISO/TC 266. Biomimetics — Terminology, concepts and methodology. 25 (International Organization for Standardization, Beuth Verlag, Berlin, Germany, 2015).

  • Chen, P.-Y., McKittrick, J. & Meyers, M. A. Biological materials: Functional adaptations and bioinspired designs. Prog. Mater. Sci. 57, 1492–1704 (2012).

    Article 
    CAS 

    Google Scholar 

  • Vijayan, P. P. & Puglia, D. Biomimetic multifunctional materials: a review. Emerg. Mater. 2, 391–415 (2019).

    Article 

    Google Scholar 

  • Shu, L. H., Ueda, K., Chiu, I. & Cheong, H. Biologically inspired design. CIRP Ann. 60, 673–693 (2011).

    Article 

    Google Scholar 

  • Goel, A. K., McAdams, D. A. & Stone, R. B. Biologically inspired design. 1 edn, 1–333 (Springer-Verlag, 2014).

  • UN. Report of the World Commission on Environment and Development: Our common future. (United Nations, 1987).

  • UN. Transforming our world: the 2030 Agenda for Sustainable Development. (United Nations, 2015).

  • Perricone, V., Langella, C. & Santulli, C. Sustainable Biomimetics: A Discussion on Differences in Scale, Complexity, and Organization Between the Natural and Artificial World. In Bionics and Sustainable Design (eds Palombini F. L. & Muthu S. S.). Ch. 7, 171–193 (Springer Singapore, 2022).

  • MacArthur, E. Towards the circular economy. J. Ind. Ecol. 2, 23–44 (2013).

    Google Scholar 

  • Rahman, M. Z. et al. Advanced biopolymers for automobile and aviation engineering applications. J. Polym. Res. 30, 106 (2023).

    Article 
    CAS 

    Google Scholar 

  • Sohn, Y. J. et al. Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnology Journal 15, 1900489 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nagel, J. K. S. A Thesaurus for Bioinspired Engineering Design. In Biologically Inspired Design (eds Goel A. K., McAdams D. A., & Stone R. B.). Ch. 4, 63–94 (Springer, 2014).

  • Nagel, J. K. S., Nagel, R. L. & Eggermont, M. Teaching Biomimicry With an Engineering-to-Biology Thesaurus. In International design engineering technical conferences and computers and information in engineering conference. 1–10 (IDETC/CIE, 2013).

  • Deldin, J.-M. & Schuknecht, M. The AskNature Database: Enabling Solutions in Biomimetic Design. In Biologically Inspired Design: Computational Methods and Tools (eds Goel A. K., McAdams D. A., & Stone R. B.). Ch. 2, 17–27 (Springer London, 2014).

  • Küntzer, J. et al. BN++ – A Biological Information System. J. Integr. Bioinform. 3, 148–161 (2006).

    Article 

    Google Scholar 

  • Wolff, J. O., Wells, D., Reid, C. R. & Blamires, S. J. Clarity of objectives and working principles enhances the success of biomimetic programs. Bioinspir. Biomim. 12, 051001 (2017).

    Article 

    Google Scholar 

  • Niewiarowski, P. H., Stark, A. Y. & Dhinojwala, A. Sticking to the story: outstanding challenges in gecko-inspired adhesives. J. Exp. Biol. 219, 912–919 (2016).

    Article 

    Google Scholar 

  • Yan, X., Sedykh, A., Wang, W., Yan, B. & Zhu, H. Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations. Nat. Commun. 11, 2519 (2020).

    Article 
    CAS 

    Google Scholar 

  • Arakawa, K. et al. 1000 spider silkomes: Linking sequences to silk physical properties. Sci. Adv. 8, eabo6043 (2022).

    Article 
    CAS 

    Google Scholar 

  • DigiMorph. A voxel-based digital library of morphology, (2022).

  • Boyer, D. M., Gunnell, G. F., Kaufman, S. & McGeary, T. M. Morphosource: Archiving and sharing 3-D digital specimen data. Pap. Palaeontol. 22, 157–181 (2016).

    Article 

    Google Scholar 

  • Chan, W.-P. et al. A high-throughput multispectral imaging system for museum specimens. Communications Biology 5, 1318 (2022).

    Article 

    Google Scholar 

  • Shirey, V. et al. LepTraits 1.0 A globally comprehensive dataset of butterfly traits. Sci. Data 9, 382 (2022).

    Article 

    Google Scholar 

  • Nelson, G. & Ellis, S. The history and impact of digitization and digital data mobilization on biodiversity research. Philos. Trans. Royal Soc. B 374, 20170391 (2019).

    Article 

    Google Scholar 

  • Broeckhoven, C. & du Plessis, A. Escaping the Labyrinth of Bioinspiration: Biodiversity as Key to Successful Product Innovation. Adv. Funct. Mater. 32, 2110235 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mitchell, J. G. et al. The Role of Diatom Nanostructures in Biasing Diffusion to Improve Uptake in a Patchy Nutrient Environment. PLoS One 8, e59548 (2013).

    Article 
    CAS 

    Google Scholar 

  • Blamires, S. J., Wu, C.-L., Blackledge, T. A. & Tso, I.-M. Environmentally induced post-spin property changes in spider silks: influences of web type, spidroin composition and ecology. Biol. J. Linn. 106, 580–588 (2012).

    Article 

    Google Scholar 

  • Büscher, T. H., Bank, S., Cumming, R. T., Gorb, S. N. & Bradler, S. Leaves that walk and eggs that stick: comparative functional morphology and evolution of the adhesive system of leaf insect eggs (Phasmatodea: Phylliidae). BMC Ecol. Evol. 23, 17 (2023).

    Article 

    Google Scholar 

  • Büscher, T. H. & Gorb, S. N. Convergent Evolution of Adhesive Properties in Leaf Insect Eggs and Plant Seeds: Cross-Kingdom Bioinspiration. Biomimetics 7, 173 (2022).

    Article 

    Google Scholar 

  • De Tommasi, E., Gielis, J. & Rogato, A. Diatom Frustule Morphogenesis and Function: a Multidisciplinary Survey. Mar. Genom. 35, 1–18 (2017).

    Article 

    Google Scholar 

  • Hamm, C. E. The evolution of advanced mechanical defenses and potential technological applications of diatom shells. J. Nanosci. Nanotechnol. 5, 108–119 (2005).

    Article 
    CAS 

    Google Scholar 

  • Ng, C. S. & Li, W.-H. Genetic and Molecular Basis of Feather Diversity in Birds. Genome Biol. Evol. 10, 2572–2586 (2018).

    Article 
    CAS 

    Google Scholar 

  • Craig, H. C. et al. Nanovoid formation induces property variation within and across individual silkworm silk threads. J. Mater. Chem. B. 10, 5561–5570 (2022).

    Article 
    CAS 

    Google Scholar 

  • Patek, S. N. Biomimetics and evolution. Science 345, 1448–1449 (2014).

    Article 
    CAS 

    Google Scholar 

  • Pro, J. W. & Barthelat, F. Is the Bouligand architecture tougher than regular cross-ply laminates? A discrete element method study. Extreme Mech. Lett. 41, 101042 (2020).

    Article 

    Google Scholar 

  • Tan, E. J., Elgar, M. A., Bian, X. & Peters, R. A. Interpreting animal behaviors – A cautionary note about swaying in phasmids. Front. Ecol. Environ. 11, 1065789 (2023).

  • Mirkhalaf, M. & Zreiqat, H. Fabrication and Mechanics of Bioinspired Materials with Dense Architectures: Current Status and Future Perspectives. JOM 72, 1458–1476 (2020).

    Article 

    Google Scholar 

  • Jackson, A. P., Vincent, J. F. V., Turner, R. M. & Alexander, R. M. The mechanical design of nacre. Proc. Royal Soc. B 234, 415–440 (1988).

    Google Scholar 

  • Hashemi Farzaneh, H. Bio-inspired design: the impact of collaboration between engineers and biologists on analogical transfer and ideation. Res. Eng. Des. 31, 299–322 (2020).

    Article 

    Google Scholar 

  • Barley, W. C., Ruge-Jones, L., Wissa, A., Suarez, A. V. & Alleyne, M. Addressing Diverse Motivations to Enable Bioinspired Design. Integrat. Comparat. Biol. 5, 1–10 (2022).

    Google Scholar 

  • Blamires, S. J., Spicer, P. T. & Flanagan, P. J. Spider Silk Biomimetics Programs to Inform the Development of New Wearable Technologies. Front. Mater. Sci. 7, 29 (2020).

    Article 

    Google Scholar 

  • Speck, O., Speck, D., Horn, R., Gantner, J. & Sedlbauer, K. P. Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspir. Biomim. 12, 011004 (2017).

    Article 

    Google Scholar 

  • Lin, R.-J., Tan, K.-H. & Geng, Y. Market demand, green product innovation, and firm performance: evidence from Vietnam motorcycle industry. J. Clean. Prod. 40, 101–107 (2013).

    Article 

    Google Scholar 

  • McGaw, J., Andrianopoulos, A. & Liuti, A. Tangled Tales of Mycelium and Architecture: Learning From Failure. Front. Built Environ. 8, 1–8 (2022).

    Article 

    Google Scholar 

  • Hölttä-Otto, K. & de Weck, O. Degree of modularity in engineering systems and products with technical and business constraints. Concurr. Eng. 15, 113–126 (2007).

    Article 

    Google Scholar 

  • Hölttä, K., Suh, E. S. & de Weck, O. Tradeoff between modularity and performance for engineered systems and products. In DS 35: Proceedings ICED 05, the 15th international conference on engineering design. 449–450 (ICED, 2005).

  • Yang, Y. et al. Recycling of composite materials. Chem. Eng. Process. 51, 53–68 (2012).

    Article 
    CAS 

    Google Scholar 

  • Miller, B. D. & Clark, J. E. Dynamic similarity and scaling for the design of dynamical legged robots. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 5719–5726 (IEEE, 2015).

  • Labonte, D. et al. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. PNAS 113, 1297–1302 (2016).

    Article 
    CAS 

    Google Scholar 

  • Perricone, V., Grun, T. B., Marmo, F., Langella, C. & Candia Carnevali, M. D. Constructional design of echinoid endoskeleton: main structural components and their potential for biomimetic applications. Bioinspir. Biomim. 16, 011001 (2020).

    Article 

    Google Scholar 

  • Kalirajan, C., Dukle, A., Nathanael, A. J., Oh, T. H. & Manivasagam, G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers (Basel) 13, 3015 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gumrah Dumanli, A. Nanocellulose and its composites for biomedical applications. Curr. Med. Chem. 24, 512–528 (2017).

    Article 

    Google Scholar 

  • Hou, J., Aydemir, B. E. & Dumanli, A. G. Understanding the structural diversity of chitins as a versatile biomaterial. Philos. Trans. Royal Soc. A 379, 20200331 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ramamoorthy, S. K., Skrifvars, M. & Persson, A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 55, 107–162 (2015).

    Article 
    CAS 

    Google Scholar 

  • Rodrigo-Navarro, A., Sankaran, S., Dalby, M. J., del Campo, A. & Salmeron-Sanchez, M. Engineered living biomaterials. Nat. Rev. Mater. 6, 1175–1190 (2021).

    Article 

    Google Scholar 

  • Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustainab. 5, 157–166 (2022).

    Article 

    Google Scholar 

  • Ashby, M. F. Materials and sustainable development (Butterworth-Heinemann, 2022).

  • Ashby, M. F. Materials and the environment: eco-informed material choice (Elsevier, 2012).

  • Ansys GRANTA selector software (Cambridge, UK, 2023).

  • Scarratt, L. R. J., Steiner, U. & Neto, C. A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces. Adv. Colloid Interface Sci. 246, 133–152 (2017).

    Article 
    CAS 

    Google Scholar 

  • Losic, D., Pillar, R. J., Dilger, T., Mitchell, J. G. & Voelcker, N. H. Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms. J. Porous Mater. 14, 61–69 (2007).

    Article 
    CAS 

    Google Scholar 

  • Studart, A. R. Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45, 359–376 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hasanov, S. et al. Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges. J. Manuf. Mater. Process. 6, 1–32 (2021).

    Google Scholar 

  • Wilts, B. D. et al. Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. Sci. Adv. 3, e1603119 (2017).

    Article 

    Google Scholar 

  • Bradbury, J. Nature’s Nanotechnologists: Unveiling the Secrets of Diatoms. PLOS Biol. 2, e306 (2004).

    Article 

    Google Scholar 

  • Viana, S. T. F. L. & de Carvalho, M. R. Squalus shiraii sp. nov. (Squaliformes, Squalidae), a new species of dogfish shark from Japan with regional nominal species revisited. Zoosyst. Evol. 96, 275–311 (2020).

    Article 

    Google Scholar 

  • King, D. R., Bartlett, M. D., Gilman, C. A., Irschick, D. J. & Crosby, A. J. Creating gecko-like adhesives for “real world” surfaces. Adv. Mater. 26, 4345–4351 (2014).

    Article 
    CAS 

    Google Scholar 

  • Imburgia, M. J., Kuo, C.-Y., Briggs, D. R., Irschick, D. J. & Crosby, A. J. Effects of Digit Orientation on Gecko Adhesive Force Capacity: Synthetic and Behavioral Studies. Integr. Comp. Biol. 59, 182–192 (2019).

    Article 
    CAS 

    Google Scholar 

  • Nwuzor, I. C., Idumah, C. I., Nwanonenyi, S. C. & Ezeani, O. E. Emerging trends in self-polishing anti-fouling coatings for marine environment. Saf. Extreme. Environ. 3, 9–25 (2021).

    Article 

    Google Scholar 

  • Maan, A. M. C., Hofman, A. H., Vos, W. M. & Kamperman, M. Recent Developments and Practical Feasibility of Polymer‐Based Antifouling Coatings. Adv. Funct. Mater. 30, 2000936 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jin, H., Tian, L., Bing, W., Zhao, J. & Ren, L. Bioinspired marine antifouling coatings: Status, prospects, and future. Prog. Mater. Sci. 124, 100889 (2022).

    Article 
    CAS 

    Google Scholar 

  • Almeida, J. R. & Vasconcelos, V. Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol. Adv. 33, 343–357 (2015).

    Article 
    CAS 

    Google Scholar 

  • Tsoukatou, M., Hellio, C., Vagias, C., Harvala, C. & Roussis, V. Chemical Defense and Antifouling Activity of Three Mediterranean Sponges of the Genus Ircinia. Z. Naturforsch C. J. Biosci. 57, 161–171 (2002).

    Article 
    CAS 

    Google Scholar 

  • Bhoj, Y., Tharmavaram, M. & Rawtani, D. A comprehensive approach to antifouling strategies in desalination, marine environment, and wastewater treatment. Chem. Phys. 2, 100008 (2021).

    Google Scholar 

  • Sousa-Cardoso, F., Teixeira-Santos, R. & Mergulhão, F. J. M. Antifouling Performance of Carbon-Based Coatings for Marine Applications: A Systematic Review. Antibiotics 11, 1102 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kumar, S., Ye, F., Dobretsov, S. & Dutta, J. Nanocoating Is a New Way for Biofouling Prevention. Front. Nanosci. 3, 771098 (2021).

    Google Scholar 

  • Tian, L. et al. Novel Anti-fouling Strategies of Live and Dead Soft Corals (Sarcophyton trocheliophorum): Combined Physical and Chemical Mechanisms. J. Bionic. Eng. 17, 677–685 (2020).

    Article 

    Google Scholar 

  • Vega-Sánchez, C., Peppou-Chapman, S., Zhu, L. & Neto, C. Nanobubbles explain the large slip observed on lubricant-infused surfaces. Nature Comm. 13, 351 (2022).

    Article 

    Google Scholar 

  • Ware, C. S. et al. Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces. ACS Appl. Mater. Interfaces 10, 4173–4182 (2018).

    Article 
    CAS 

    Google Scholar 

  • Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L. & Picu, R. C. Morphology and mechanics of fungal mycelium. Sci. Rep. 7, 13070 (2017).

    Article 
    CAS 

    Google Scholar 

  • Dias, P. P., Jayasinghe, L. B. & Waldmann, D. Investigation of Mycelium-Miscanthus composites as building insulation material. Res. Mat. 10, 100189 (2021).

    Google Scholar 

  • Javadian, A., Le Ferrand, H., Hebel, D. E. & Saeidi, N. Application of Mycelium-Bound Composite Materials in Construction Industry: A Short Review. Mater. Sci. Eng. 7, 1–9 (2020).

    Google Scholar 

  • Abhijith, R., Ashok, A. & Rejeesh, C. R. Sustainable packaging applications from mycelium to substitute polystyrene: a review. Mater. Today 5, 2139–2145 (2018).

    CAS 

    Google Scholar 

  • Silverman, J., Cao, H. & Cobb, K. Development of Mushroom Mycelium Composites for Footwear Products. Cloth. Text. Res. J. 38, 119–133 (2020).

    Article 

    Google Scholar 

  • Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 187, 108397 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tacer-Caba, Z., Varis, J. J., Lankinen, P. & Mikkonen, K. S. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Mater. Des. 192, 108728 (2020).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *